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Abstract The objective of this study was to determine
patterns of ectomycorrhizas (ECM) and arbuscular mycor-
rhizas (AM) colonization associated with Alnus acuminata
(Andean alder), in relation to soil parameters (electrical
conductivity, field H2O holding capacity, pH, available P,
organic matter, and total N) at two different seasons
(autumn and spring). The study was conducted in natural
forests of A. acuminata situated in Calilegua National Park
(Jujuy, Argentina). Nine ECM morphotypes were found on
A. acuminata roots. The ECM colonization was affected by
seasonality and associated positively with field H2O
holding capacity, pH, and total N and negatively associated
with organic matter. Two morphotypes (Russula alnijor-
ullensis and Tomentella sp. 3) showed significant differ-
ences between seasons. Positive and negative correlations
were found between five morphotypes (Alnirhiza silkacea,
Lactarius omphaliformis, Tomentella sp. 1, Tomentella sp.
3, and Lactarius sp.) and soil parameters (total N, pH, and
P). A significant negative correlation was found between
field H2O holding capacity and organic matter with AM

colonization. Results of this study provide evidence that
ECM and AM colonization of A. acuminata can be affected
by some soil chemical edaphic parameters and indicate that
some ECM morphotypes are sensitive to changes in
seasonality and soil parameters.
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Introduction

Alnus spp., (Betulaceae), are used in highland areas as
cattle forage and as a firewood source in South and Cen-
tral America, and they quickly spread over previously de-
forested areas (Dawson 1990). Alnus acuminata Kunth
(Andean alder) is distributed along the Andes from Ven-
ezuela to 28°S latitude in NW Argentina; it is the south-
ernmost species of the genus, growing between 400 and
3,000 m a.s.l. (Grau 1985; Halloy 1991).

Alder roots are associated with ectomycorrhizal (ECM),
arbuscular mycorrhizal (AM), and actinorrhizal symbionts
(Trappe 1962; Baker and Mullin 1992; Cervantes and
Rodríguez Barrueco 1992). All of these symbionts are
known to be beneficial to the host, contributing to a better
nutritional status and pathogen defense and thus enhancing
the capacity for establishment of individual plants and
plant populations.

From studies on ectomycorrhizas of alder species in
North America, Europe, and South America, it is known
that ectomycorrhizal symbionts are dominant on Alnus spp.
roots (Miller et al. 1991; Pritsch et al. 1997a,b; Becerra
et al. 2002, 2005a). AM have been observed from Alnus
rubra Bong. (Red alder) (Rose 1980), A. glutinosa (L.)
Gaertn. (Hall et al. 1979; Rose 1980; Beddiar 1984), Alnus
crispa (Ait.) Pursh. (Daft 1983), A. incana (L.) Moench
(Chatarpaul et al. 1989; Averby and Ulf 1998), A. japonica
S. et Z. (Chatarpaul et al. 1989), and A. acuminata
(Albornoz 1991; Becerra 2002). However, AM infection
was not found on A. rubra and A. glutinosa by Miller et al.
(1992) and Pritsch et al. (1997b), respectively.
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The importance of mycorrhizal fungi in the mineral
nutrition of the host plant depends on the ability of the
fungi to exploit sources of nonmobile nutrients in the soil.
Factors, such as root properties, soil or climate type, soil
organisms, soil disturbance, and host–fungus compatibil-
ity, may influence the occurrence and effectiveness of
mycorrhizal associations (Brundett 1991).

Ectomycorrhizal species composition and diversity
reacts to changing soil conditions and thus is an important
ecological parameter for the performance of a tree species
(Pritsch et al. 1997b). AM fungi are sensitive to physical,
chemical and biological soil conditions (Bowen 1987;
Wilson and Tommerup 1992; Hamel et al. 1997). Studies
on the distribution of AM fungi, quantification, identifi-
cation, and biodiversity are important to understand the
plant–fungi–soil interaction. However, there is a lack of
knowledge on edaphic factors influencing mycorrhizae (as
stated by Swaty et al. 1998; Moyersoen et al. 2001; and El
Karkouri et al. 2002), with emphasis in South America.

This work was carried out to determine the phenology of
the ECM and AM in the A. acuminata mountain forest of
Calilegua National Park (Argentina) in relation to some soil
parameters (electrical conductivity, field H2O holding
capacity, pH, available P, organic matter, and total N) at
two different seasons (spring and autumn).

Materials and methods

Sampling sites

The field site was in an area of Calilegua National Park rain
forest (elevation of 1,700 m, 23°40′35′S 64°53′53″W).
Mean annual temperature is between 10 and 15°C andmean
annual rainfall is between 800 and 1,000 mm (Ramadori
et al. 1996). Plant communities are dominated by A.
acuminata Kunth (Betulaceae), Acacia aroma (Legumino-
sae), Cedrela angustifolia Sesse et Mocino ex DC.
(Meliaceae), Podocarpus parlatorei Pilg. (Podocarpaceae),
and Ocotea puberula (Nees. & Mart.) Nees. (Lauraceae).
At the highest elevation of the forest, there are mono-
specific or mixed forests of A. acuminata.

Field collection and laboratory analysis

Roots and soil were sampled in 12 plots (10×10 m) at the
highest elevation of the park, where a mono-specific forest
of A. acuminata grows. At each plot, one tree was sampled
during spring (1999) and autumn (2000). One soil block of
15×15 cm to a depth of ca. 10 cm was taken from each of
the 12 plots at each time. The samples were placed in
plastic bags and stored at 4°C during transport to the
laboratory.

Ectomycorrhizal analyses and quantification

Alder roots identified from the others by the presence of
actinorrhizal nodules and ECM and AM roots were sorted
based on their morphological appearance. After ectomy-
corrhizae were carefully cut off, they were further sorted
according to their morphological features (color, mantle
layers, rhizomorphs, lactifers, etc.) under a Zeiss stereo
microscope at 10–40× magnification. Within every mor-
photype, several tips were prepared for DNA extraction,
while others were subjected to comparative anatomical
studies following Agerer’s (1991) method. Unidentified
ectomycorrhizas were termed according to Agerer (1991)
using the genus of the tree species completed by “rhiza”
and a describing epithet. Nine ECM types could be
characterized in this way and they have been described in
detail (Becerra 2002).

The percentage of root tips colonized by ECM fungi was
determined as described by Gehring and Whitham (1994).
Each sample was divided into three subsamples; the roots
of each subsample were randomly distributed on a plastic
plate grid of 9×6 compartments each measuring 2.5×2.5
cm. The percentage of ECM colonization was calculated as
the number of ECM root tips divided by the total number of
short roots (Gehring and Whitham 1994). Percent coloni-
zation for each ECM morphotype was calculated for each
root system by dividing the number of root tips of each
ECM type by the total number of root tips and by
multiplying it by 100 (Helm et al. 1999).

Arbuscular mycorrhizae analysis

Nonectomycorrhizal roots were randomly sampled. They
were placed in a 50-ml beaker containing 5 ml 20% KOH
solution (clearing agent). The beakers were maintained at
room temperature for 24 h. After clearing, the roots were
washed and transferred to another 50-ml beaker containing
5 ml of 2% HCl for 4 min. Roots were then transferred to a
50-ml beaker containing 5 ml of 5% aniline blue. The
beakers were maintained at room temperature for 24 h
(Grace and Stribley 1991). After staining, the roots were
stored in 50% glycerin until percent root length coloniza-
tion could be estimated.

Five slides each with five to six randomly selected
stained roots (approximately 25–30, 1-cm-long root) were
prepared from every individual tree sample and mount-
ed permanently in polyvinyl alcohol–lactic acid–glycerol
(PVLG) (Koske and Tessier 1983). Quantification of AM
root colonization was performed using the magnified
intersection method (McGonigle et al. 1990) by inspecting
intersections between the microscope eyepiece cross hair
and roots at 400× magnification. A total of 100 intersects
per sampling site were examined with a compound mi-
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croscope, recording the presence or absence of arbuscules,
vesicles, intraradical and extraradical aseptate hyphae.

Soil analyses

The soils were classified as Inceptisols. Main soil physical
and chemical characteristics are described in Vargas Gil
and Bianchi (1981). For both seasons, soil samples were
air-dried and sieved through a 2-mm sieve, and the fraction
that was ≤2 mm was analyzed. The following variables
were measured within each sample: electrical conductivity
(measured in the extract) (Bower and Wilcox 1965), field
H2O holding capacity (Veihmeyer and Hendrickson 1931),
soil pH using the soil water paste technique (1:2.5 soil:
water) (Peech 1965), available phosphorus (Bray–Kurtz
method 1, Jackson 1964), organic matter (Nelson and
Sommers 1982), and total N (micro-Kjedhal method).

Statistical analyses

The influence of sampling dates (autumn and spring) and
six independent covariates (electrical conductivity, field
capacity, pH, P, organic matter, and total N) upon the
ectomycorrhizal colonization was first analyzed through an
analysis of covariance (ANCOVA).

Multiple regression analysis (linear model) was used to
examine the relationships between ECM colonization as
response variable (StatSoft Inc. 1995) and soil parameters.
The normality assumption was tested through the Shapiro–
Wilk test. No multicolineality was detected among the in-
dependent variables. Associations between soil parameters,
seasonality, and morphotype percentage colonization data
were determined using the Spearman rank–order correla-
tion coefficient (StatSoft Inc. 1995).

AM colonization was not normally distributed, and
data transformation was not suitable for parametric anal-
ysis application. All data were analyzed statistically by
Kruskall–Wallis. Associations between AM colonization
and soil properties were determined using Spearman rank–
order correlation coefficient (StatSoft Inc. 1995).

Results

Soils from the Calilegua National Park were acidic, with a
sandy-loam texture, high content of organic matter, N and
P, and high levels of field H2O holding capacity and
electrical conductivity (Table 1). There were no significant
differences of soil characteristics between seasons.

Ectomycorrhizal colonization of A. acuminata in au-
tumn was 85.6% [standard error (SE) 0.23] with a range
from 70.4 to 95.6%; in spring, it was 62.0% (SE 3.96) with
a range from 23 to 90%. The ECM colonization on roots
was significantly affected by the two sampling dates (P<
0.0001) and soil parameters (electrical conductivity, field
capacity, pH, available P, organic matter, and total N) used
as covariates (P<0.001).

The polynomial function estimated by the multiple
regression analysis showed that 72% (R2=0.7224) of the
overall variation in percentage of ECM colonization may
be explained through the variation in the independent var-
iables (soil parameters). ECM colonization for all morpho-
types together with A. acuminata was positively correlated
with field H2O holding capacity (β=0.524, t=2.834,
P<0.05), pH (β=0.567, t=2.859, P<0.05), and total N
(β=0.771, t=3.787, P<0.01) and negatively correlated with
organic matter (β=−0.693, t=−4.042, P<0.001).

While nine ECM morphotypes were common in the soil
at both sampling dates with no significant differences in
their frequency, some morphotypes showed significant
reactions to the site conditions (Tables 2, 3). The morpho-
types Russula alnijorullensis (Sing.) Sing. and Tomentella
sp. 3 presented a significantly different degree of colo-
nization between sampling dates (Table 2). Variation in
the percentage of ECM morphotypes was associated with
some soil variables (Table 3). Lactarius omphaliformis
Romagn. and Lactarius sp. percentages were associated
positively with high total N and negatively with pH, while
Tomentella sp. 1 was associated positively with pH and
negatively with total N. Alnirhiza silkacea was associated
positively with available P and Tomentella sp. 3 was
associated negatively with pH.

Table 1 Soil properties for both seasons studied at Calilegua
National Park

Parameters Autumn Spring

Soil type Inceptisol Inceptisol
Electrical conductivity (dS m−1) 0.50±0.25 0.37±0.13
Field capacity (%) 28.45±8.46 30.79±5.39
pH 1:2.5 4.18±0.29 4.38±0.59
Available phosphorus (mg kg−1) 20.40±8.01 25.55±12.67
Organic matter (%) 4.82±1.62 4.99±1.32
Total N (%) 0.32±0.17 0.42±0.29
Texture Sandy loam Sandy loam

No significant differences between seasons were found. Values
represent the mean for 12 samples

Table 2 Ectomycorrhizal colonization (%) by fungi (morphotypes)
in Alnus acuminata for both seasons at Calilegua National Park

Morphotypes Seasons

Autumn Spring

Alnirhiza silkacea 1.49±2.19 7.03±8.23
Cortinarius helodes 0.03±0.09 0.72±2.48
Cortinarius tucumanensis 0.70±1.12 1.71±2.21
Lactarius sp. 4.59±7.17 2.03±5.46
Lactarius omphaliformis 10.24±13.67 7.11±10.93
Russula alnijorullensis 0.00±0.00 7.99±18.17*
Tomentella sp. 1 24.76±31.54 12.52±18.96
Tomentella sp. 2 0.54±1.87 2.57±5.71
Tomentella sp. 3 44.04±25.64 17.86±18.07*

Significance between seasons are indicated as *P<0.05. Values are
means of 12 trees for each season
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Arbuscular mycorrhizal colonization of A. acuminata in
autumn was 4.68% [standard error (SE) 2.23] with a range
from 1 to 8.5%; in spring, it was 1.98% (SE 2.68) with a
range from 0 to 8%. AM colonization differed between
seasons (K 6.937, P<0.01), and AM colonization was
negatively associated with only two edaphic variables,
field H2O holding capacity (R −0.481, P<0.05) and organic
matter (R −0.468, P<0.05).

Discussion

The very few studies that have focused on the belowground
ectomycorrhizal community of Alnus reported low num-
bers of ectomycorrhizal types. Miller et al. (1991) defined
11 ectomycorrhizal types on A. rubra Bong., and Pritsch
et al. (1997b) distinguished 16 ectomycorrhizal types on
A. glutinosa. Nine morphotypes were observed on Alnus
sinuata (Helm et al. 1996). We found nine morphotypes
(in 12 samples) associated with A. acuminata in contrast
to Becerra et al. (2005b), who found 12 morphotypes in A.
acuminata (in 24 samples), although the same symbionts
were found in both studies. These numbers are generally
lower than those reported for coniferous trees, such as
Pinus sp., Picea sp., which present high ECM morpho-
types (Taylor and Bruns 1999; Dahlberg et al. 1997;
Jonsson et al. 1999). Possible reasons for our low number
of ECM morphotypes may relate to limited fungal asso-
ciates with Alnus and inadequate sampling. Most studies
that have analyzed species richness based on ectomycor-
rhizal root-tip data have not sampled enough to adequately
capture all of the species in a stand (Horton and Bruns
2001). However, Alnus is known to associate with a low
number of host-specific fungi (Molina et al. 1992), es-
pecially when compared to a host such as Douglas fir
(Pseudotsuga menziesii), which can associate with some
2,000 species of fungi, most of which show a broad host
range (Trappe and Fogel 1977). We therefore feel that the

low species richness observed here relates more to spec-
ificity phenomena rather than an artefact of low sample
size.

Some soil parameters and seasonality affected ECM
diversity and ECM and AM colonization in A. acuminata.
At the two seasons of sampling, an influence on the
percentage of ECM colonization was observed. Seasonal
variation in temperature, soil moisture, physiological and
phenological changes in the host plant affected both
symbionts (Marx et al. 1970; Bowen 1970; Theodorou
and Bowen 1971; Harvey et al. 1978; Swaty et al. 1998). In
this study, we observed a higher ECM colonization in
autumn than in spring. In autumn, labile forms of organic N
like amino acids reach their zenith in soil (Abuarghub and
Read 1988), and this may have contributed to the increased
level of ECM colonization reported here.

It is known that mycorrhizal formation, in general,
depends on the soil conditions (Baar 1995). In our work,
ECM colonization was positively associated with field
H2O holding capacity, pH, and total N and negatively
associated with organic matter.

Soil moisture is a very important soil parameter for ECM
formation (Slankis 1974; Harvey et al. 1986). In our study,
ECM colonization was positively associated with soil
moisture. This is in concordance with other studies since
drought has been shown to have a negative effect on
mycorrhizal colonization (Harvey et al. 1978; Read and
Boyd 1986; Lanzac et al. 1995; Nilsen et al. 1998). Higher
values of field H2O holding capacity were obtained during
autumn, and the ECM fungi appeared to respond with
higher levels of root colonization.

ECM fungi are generally considered to be acidophilus
and tolerate a range of pH from 3 to 5 (Marks and
Kozlowski 1973; Read 1991; Paul and Clark 1996). pH is
an important soil parameter for the efficiency and distri-
bution of ectomycorrhizal fungi (Danielson and Visser
1989; Erland and Söderström 1990). The pH range in this
study was between 4.18 and 4.38, with a maximum ECM
percentage at pH 4.18. Lee (1981) and Becerra (2002)
observed a positive correlation between the highest values
of pH and ECM colonization on Pinus spp. and A.
acuminata. In the present work, ECM fungi were adapted
to acidic soils.

ECM fungi are intimately associated with the litter layers
for providing access to both inorganic and organic N
compounds (Dames et al. 1999). N soil availability is the
best predictor of ECM community effects because of its
known direct effect on ECM growth (Wallander 1995;
Lilleskov et al. 2001). In general, the ECM mycelium,
which is the main functional part of the fungal biomass, can
be affected by increased N availability. In this work, ECM
colonization was positively associated with total N. In
contrast, Lee (1981) found a negative correlation between
total N and ECM colonization on Pinus spp. This can be
explained by the broad physiological potential of ectomy-
corrhizas for N uptake and supplying this N to the plant
host (Smith and Read 1997). Species of ECM fungi have
been shown to vary in their response to soil N (Lilleskov
et al. 2002).

Table 3 Associations between ECM morphotype colonization in
Alnus acuminata and soil parameters for both seasons

Morphotypes E.C.a F.C.a pHa Pa OMa Nta

Alnirhiza silkacea NS NS NS +* NS NS
Cortinarius helodes NS NS NS NS NS NS
Cortinarius tucumanensis NS NS NS NS NS NS
Lactarius sp. NS NS −**** NS NS +***
Lactarius omphaliformis NS NS −**** NS NS +***
Russula alnijorullensis NS NS NS NS NS NS
Tomentella sp. 1 NS NS +** NS NS −*
Tomentella sp. 2 NS NS NS NS NS NS
Tomentella sp. 3 NS NS −** NS NS NS
aE.C. (dS m−1), F.C. field H2O holding capacity (%), pH (1:2.5), P
(mg kg−1), OM (%), Nt (%)
NS Not significant, + positive association, − negative association
*P<0.05
**P<0.01
***P<0.001
****P<0.0001
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ECM colonization decreased with higher amounts of
organic matter. Our results are in concordance with Marx
et al. (1977) and Lee (1981), who found that high amounts
of organic matter in the soil suppressed the ECM colo-
nization in Pinus spp. This decreased ECM colonization
suggests that a number of interacting factors may be pres-
ent including availability of nutrients, water relations,
physical constraints on root growth, and chemical leaching
from litter (Michelsen et al. 1995).

The percentage of colonization of morphotypes R.
alnijorullensis and Tomentella sp. 3 varied by seasons
with a higher rate of colonization during spring and autumn
for each morphotype, respectively. This could be asso-
ciated with periods of greatest root growth and mycorrhizal
activity (production of mycorrhizal fruit bodies and my-
celial growth) during spring and autumn (Leake and Read
1997). The dynamics of mycorrhiza formation by indi-
vidual fungi depends on the growth of hyphae, the intrin-
sic rate of infection from propagules, and the capacity of
fungi to use carbon substrates from host roots (Tommerup
1983; Wilson 1984; Nadarajah and Nawawi 1987; Pearson
and Jakobsen 1993).

Correlations between morphotypes and soil parameters
could be due to different species of fungi exhibiting
different physiological properties (Mejstrik and Dominik
1969). They colonize the same substrate, but they may
extract, adapt, or react to different components of the
substrate (Erland and Taylor 2002). As Ogawa (1985)
suggested, the florae of higher fungi in forests are decided
by plant species composition, soil properties, and soil
microbial florae and also vary continuously following the
development of forest ecosystem.

The quantity of mycorrhizal root colonized by AM fungi
within a soil can change throughout the season (Rosendahl
et al. 1989). The arbuscular mycorrhizal colonization dif-
fered between seasons, with the higher rate occurring dur-
ing autumn. These results are in agreement with Brundrett
and Kendrick (1990), who obtained greatest root mycor-
rhizal activity in autumn and winter. In contrast, Becerra
(2002) found higher colonization during spring for A.
acuminata. These results could be the result of climate
factors, soil moisture, nutrient pulse, or host phenology
affecting AM colonization (Abbott and Robson 1991;
Cade-Menun et al. 1991; Sanders and Fitter 1992;
Eissenstat et al. 1993; Sanders 1993), but we can neither
discard the possibility of a small sample size.

AM colonization was affected negatively by organic
matter and field H2O holding capacity. These results are in
agreement with Becerra (2002), who found negative cor-
relation between soil variables and AM colonization with
the same host. Low AM colonization with high soil fertility
(Mejstrik 1973; Hayman et al. 1976) may be due to low
AM spore germination and/or reduced carbon allocation
to mycorrhizal roots by the plants (Linderman 1997;
Smith and Read 1997). With respect to soil moisture,
Mejstrik (1965), Redhead (1971), Kahn (1972), Trinick
(1977), and Cade-Menun et al. (1991) report similar re-
sults where high soil moisture reduced AM colonization.

This could be due to the low spore abundance and ger-
mination occurring at higher soil moisture (Daniels and
Trappe 1980; Sylvia and Schenk 1983; Anderson et al.
1984). Competition with ECM fungi in soils with high
fertility and soil H20 capacity may also contribute to low
AM colonization.

Although we only measured some soil parameters, the
present results suggest that future research should focus on
other soil parameters and seasonal variations that permit a
complete comprehension of the ECM-AM–A. acuminata
soil complex. In this study, we explain how ECM diversity
and ECM and AM colonization is affected in two seasons
by some soil parameters. This knowledge can be used in
forest management and reforestation practices with A.
acuminata.
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